Model:

Updated:

27 times per day, from 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00 UTC

Greenwich Mean Time:

12:00 UTC = 13:00 CET

Resolution:

0.0625° x 0.0625°

Parameter:

Soaring Index

Description:

The Soaring Index map - updated every 6 hours - shows the modelled lift rate by thermals (convective clouds).
The index is based on weather information between 5 000 feet (1 524 metres) and 20 000 feet (6 096 metres)
and is expressed in Kelvin.

Table 1: Characteristic values for Soaring Index for soaring

Table 2: Critical values for the Soaring Index

Table 1: Characteristic values for Soaring Index for soaring

Soaring Index |
Soaring Conditions |

Below -10 -10 to 5 5 to 20 Above 20 |
Poor Moderate Good Excellent ^{*} |

Table 2: Critical values for the Soaring Index

Soaring Index |
Convective potential |

15-20 | Isolated showers, 20% risk for thunderstorms |

20-25 | Occasionally showers, 20-40% risk for thunderstorms |

25-30 | Frequent showers, 40-60% risk for thunderstorms. |

30-35 | 60-80% risk for thunderstorms. |

35 + | >80% risk for thunderstorms |

COSMO-DE:

COSMO The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has been designed for both operational numerical weather prediction (NWP) and various scientific applications on the meso-β and meso-γ scale. The COSMO-Model is based on the primitive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere. The model equations are formulated in rotated geographical coordinates and a generalized terrain following height coordinate. A variety of physical processes are taken into account by parameterization schemes.

The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular mesh global gridpoint model GME form – together with the corresponding data assimilation schemes – the NWP-system at DWD, which is run operationally since end of 1999. The subsequent developments related to the model have been organized within COSMO, the Consortium for Small-Scale Modelling. COSMO aims at the improvement, maintenance and operational application of the non-hydrostatic limited-area modelling system, which is now consequently called the COSMO-Model.

The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular mesh global gridpoint model GME form – together with the corresponding data assimilation schemes – the NWP-system at DWD, which is run operationally since end of 1999. The subsequent developments related to the model have been organized within COSMO, the Consortium for Small-Scale Modelling. COSMO aims at the improvement, maintenance and operational application of the non-hydrostatic limited-area modelling system, which is now consequently called the COSMO-Model.

NWP:

Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).